
# Search For Contact Interactions at HERA

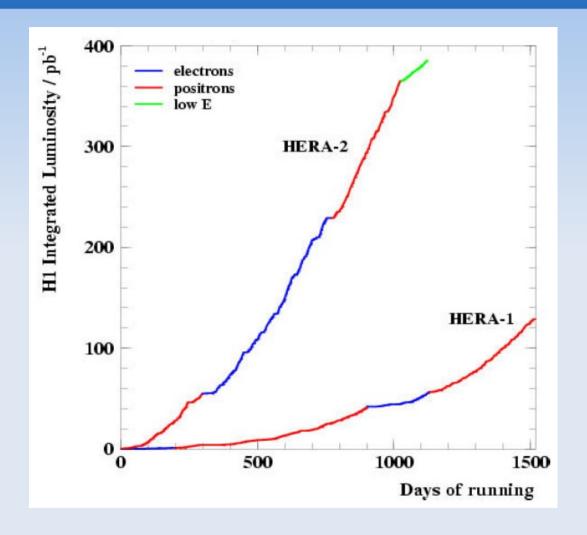

Hayk Pirumov (PI Heidelberg)
On behalf of the H1 Collaboration

#### Outline

- Introduction
- Deep Inelastic Scattering at HERA
- Contact Interactions results
- Summary

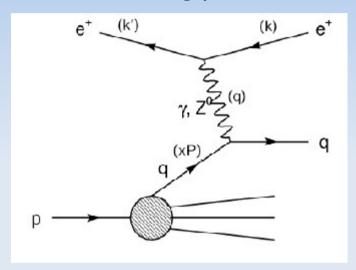
#### HERA Collider and H1 Experiment








- World's only electron proton collider, at DESY, Hamburg.
- Was operating from 1992 to 2007.
- Two collider experiments H1 and ZEUS.

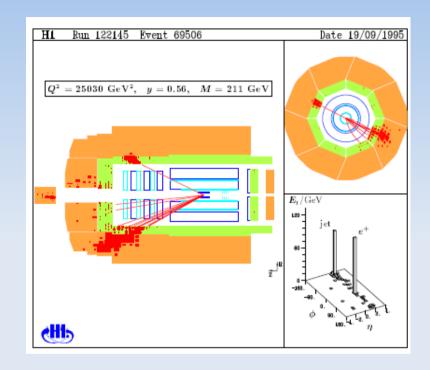

#### HERA Collider and H1 Experiment

- 1994 2000: HERA I data.
- 2003 2007: HERA II data (luminosity upgrade)
- H1 experiment collected about 0.5fb<sup>-1</sup> data.



### Deep Inelastic ep Scattering

# Neutral Current Deep Inelastic scattering process:

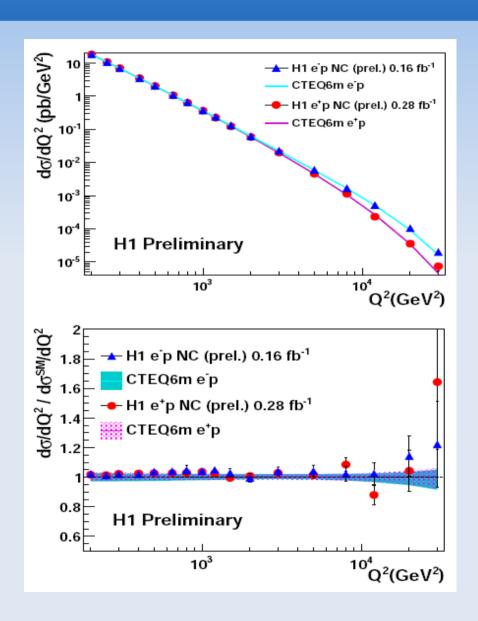



Kinematic variables:

$$Q^{2} = -q^{2} = -(k-k')$$

$$x = \frac{Q^{2}}{2(P \cdot q)} \quad y = \frac{P \cdot (k-k')}{P \cdot k}$$

$$s = (p+k)^{2} \quad Q^{2} = x \cdot y \cdot s$$




Q<sup>2</sup> is the virtuality of the exchanged boson

x is the fraction of proton momentum, carried by the interacting quark.

y is the fraction of lepton energy transferred in the proton rest frame.

#### Deep Inelastic ep Scattering



 Data are well described by Standard Model.

Standard Model prediction is based on CTEQ6M parton distribution function.

- Signs of new physics would be expected at highest Q<sup>2</sup> region.
- Four-fermion eeqq contact interactions provide a convenient method to investigate the interference of new fields.

#### **Contact Interactions**

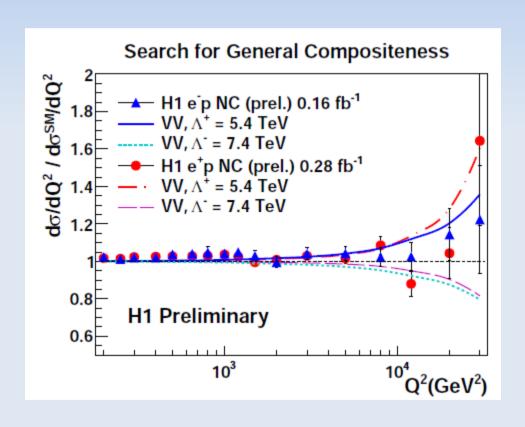
 Effective Lagrangian for neutral current vector-like contact interactions: (scalar and tensor CI are constrained beyond HERA sensitivity)

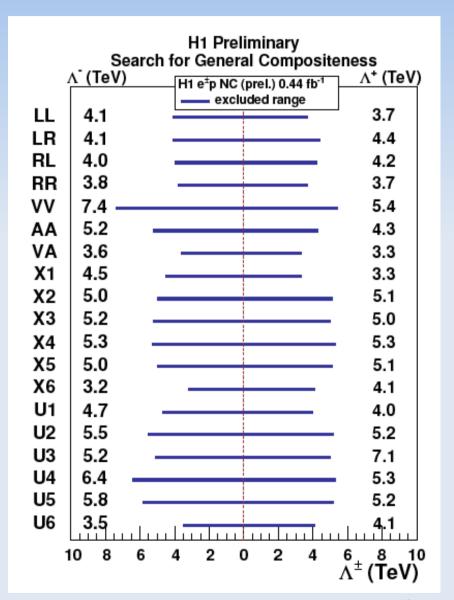
$$L_{CI} = \sum_{i, j=L, R} \eta_{ij}^{eq} (\overline{e}_i \gamma_{\mu} e_i) (\overline{q}_j \gamma^{\mu} q_j)$$

- 4 possible  $\eta$  coupling coefficients for each q flavor
- Any particular model can be constructed by appropriate choice of the coupling  $\eta$
- Models currently tested:
  - compositeness
  - leptoquarks
  - large extra dimensions
  - quark radius

## General (Compositeness) Models

Contact interactions coupling are related to the mass scale via:


$$\eta_{ab}^{eq} = \frac{\pm 4\pi}{\Lambda^2}$$


Different models assume different helicity structure of new interactions, given by a set of  $\eta$  couplings

| Models conserving parity: |                        |                  |                          |                          |                        |                          |                          |                          |
|---------------------------|------------------------|------------------|--------------------------|--------------------------|------------------------|--------------------------|--------------------------|--------------------------|
| Model                     | $\eta_{	ext{LL}}^{ed}$ | $\eta_{LR}^{ed}$ | $\eta_{\it RL}^{\it ed}$ | $\eta_{\it RR}^{\it ed}$ | $\eta_{	ext{LL}}^{eu}$ | $\eta_{\it LR}^{\it eu}$ | $\eta_{\it RL}^{\it eu}$ | $\eta_{\it RR}^{\it eu}$ |
| VV                        | +η                     | +η               | +η                       | +η                       | +η                     | +η                       | +η                       | +η                       |
| AA                        | +η                     | $-\eta$          | $-\eta$                  | $+\eta$                  | $+\eta$                | $-\eta$                  | $-\eta$                  | +η                       |
| VA                        | +η                     | $-\eta$          | +η                       | $-\eta$                  | +η                     | -η                       | +η                       | $-\eta$                  |
| X1                        | +η                     | -η               |                          |                          | +η                     | -η                       |                          |                          |
| X2                        | +η                     |                  | +η                       |                          | $+\eta$                |                          | +η                       |                          |
| Х3                        | +η                     |                  |                          | $+\eta$                  | $+\eta$                |                          |                          | +η                       |
| X4                        |                        | +η               | +η                       |                          |                        | +η                       | +η                       |                          |
| X5                        |                        | +η               |                          | $+\eta$                  |                        | +η                       |                          | +η                       |
| X6                        |                        |                  | +η                       | $-\eta$                  |                        |                          | +η                       | –η                       |
| U1                        |                        |                  |                          |                          | +η                     | $-\eta$                  |                          |                          |
| U2                        |                        |                  |                          |                          | +η                     |                          | +η                       |                          |
| U3                        |                        |                  |                          |                          | +η                     |                          |                          | +η                       |
| U4                        |                        |                  |                          |                          |                        | +η                       | +η                       |                          |
| U5                        |                        |                  |                          |                          |                        | +η                       |                          | +η                       |
| U6                        |                        |                  |                          |                          |                        |                          | +η                       | –η                       |
| Models violating parity:  |                        |                  |                          |                          |                        |                          |                          |                          |
| LL                        | +η                     |                  |                          |                          | +η                     |                          |                          |                          |
| LR                        |                        | +η               |                          |                          |                        | +η                       |                          |                          |
| RL                        |                        |                  | +η                       |                          |                        |                          | +η                       |                          |
| RR                        |                        |                  |                          | +η                       |                        |                          |                          | +η                       |

#### General (Compositeness) Models

95% CL lower limits on Λ compositeness scale between 3.2 – 7.4 TeV.





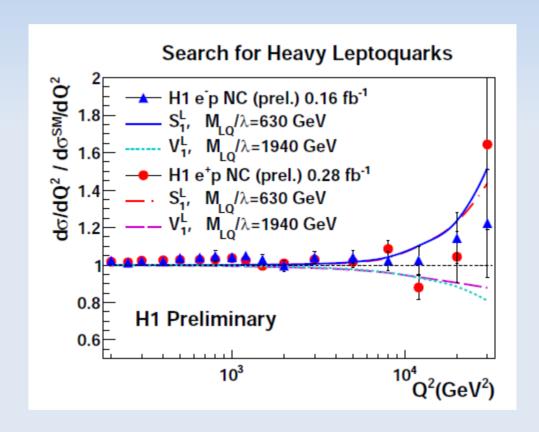
#### Leptoquarks

For high mass leptoquarks

$$M_{LO}\gg\sqrt{s}$$

virtual leptoquark production(exchange) results in an effective contact interaction type coupling:

$$\eta_{LQ} \sim \left(\frac{\lambda}{M_{LQ}}\right)^2$$


where  $\lambda$  is the leptoquark Yukava coupling.

|                       | $\eta_{ab}^q = \epsilon_{ab}^q \cdot$ | $(\lambda/M_{LQ})^2$             |   |
|-----------------------|---------------------------------------|----------------------------------|---|
| LQ                    | $\epsilon^u_{ab}$                     | $\epsilon^d_{ab}$                | F |
| al.                   | 1                                     |                                  | - |
| $S_0^L$               | $\epsilon^u_{LL} = +\frac{1}{2}$      |                                  | 2 |
| $S_0^R$               | $\epsilon^u_{RR} = +\frac{1}{2}$      |                                  | 2 |
| $\tilde{S}_0^R$       |                                       | $\epsilon^d_{RR} = +\frac{1}{2}$ | 2 |
| $S_{1/2}^{L}$         | $\epsilon^u_{LR} = -\frac{1}{2}$      |                                  | 0 |
| $S_{1/2}^{R}$         | $\epsilon^u_{RL} = -rac{1}{2}$       | $\epsilon_{RL}^d = -rac{1}{2}$  | 0 |
| $\tilde{S}_{1/2}^{L}$ |                                       | $\epsilon^d_{LR} = -\frac{1}{2}$ | 0 |
| $S_1^L$               | $\epsilon^u_{LL} = + \tfrac{1}{2}$    | $\epsilon_{LL}^d = +1$           | 2 |
| $V_0^L$               |                                       | $\epsilon_{LL}^d = -1$           | 0 |
| $V_0^R$               |                                       | $\epsilon_{RR}^d = -1$           | 0 |
| $\tilde{V}_0^R$       | $\epsilon^u_{RR} = -1$                |                                  | 0 |
| $V_{1/2}^{L}$         |                                       | $\epsilon^d_{LR} = +1$           | 2 |
| $V_{1/2}^{R}$         | $\epsilon^u_{RL} = +1$                | $\epsilon_{RL}^d = +1$           | 2 |
| $\tilde{V}_{1/2}^{L}$ | $\epsilon^u_{LR} = +1$                |                                  | 2 |
| $V_1^L$               | $\epsilon^u_{LL} = -2$                | $\epsilon^d_{LL} = -1$           | 0 |

BRW classification: 14 different leptoquarks (7 scalar and 7 vector)

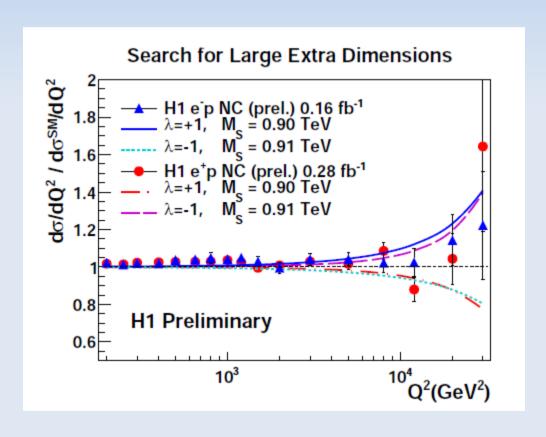
#### Leptoquarks

95% CL lower limits on the mass to coupling ratio for the different types of leptoquarks vary in the range 0.4 - 1.9 TeV.



### Large Extra Dimensions

- Arkani-Hamed-Dimopoulos-Dvali (ADD) model assumes that spacetime has 4+n dimensions.
- Gravity can propagate into the extra dimensions
- Contribution of graviton exchange to neutral current DIS cross section can be described by an effective contact interaction type coupling:


$$\eta_G \sim \lambda / M_S^4$$

where  $\lambda$  is the coupling strength

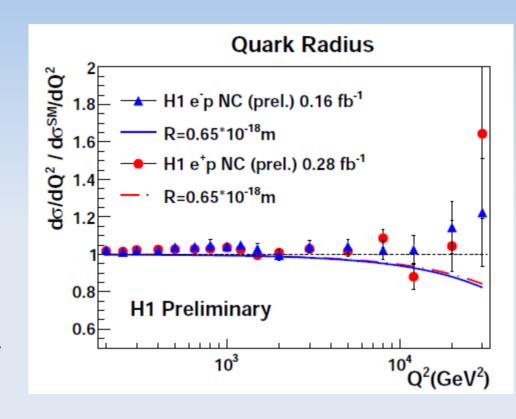
### Large Extra Dimensions

95% CL lower limits on *M* gravitation scale depending on the sign:

$$M_{S}^{+} > 0.90 \text{ TeV}$$
  
 $M_{S}^{-} > 0.91 \text{ TeV}$ 



#### **Quark Radius**


Finite size of the quark can be defined by introducing spatial distribution of the electroweak charge:

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma_{SM}}{dQ^2} \cdot \left(1 - \frac{R^2}{6} \cdot Q^2\right)^2$$

where *R* is root mean squared of the electroweak charge distribution.

Assuming electron point-like 95% CL upper limit on the quark radius:

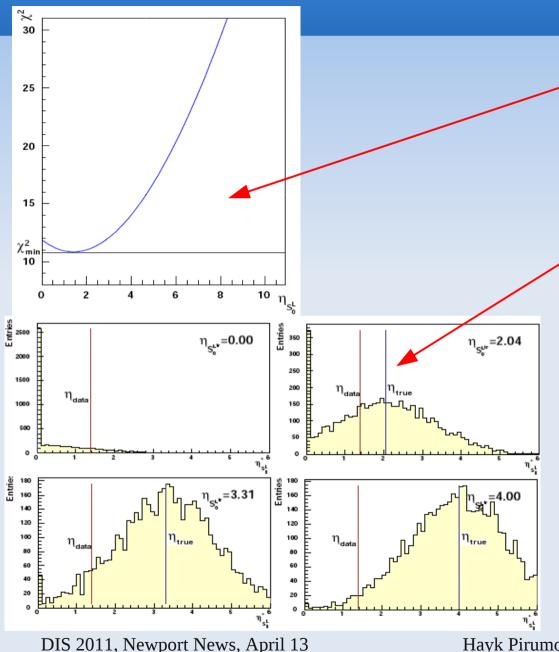
$$R < 0.65 \cdot 10^{-18} \, \text{m}$$



#### Summary

- H1 NC data are in a good agreement with the Standard Model predictions.
- Limits on deviations from Standard Model set in different models:
  - Compositeness (3.2 7.2 TeV)
  - Leptoquarks (0.4 1.9 TeV)
  - Large Extra dimensions (0.90 0.91 TeV)
  - Quark Radius (0.65 \* 10<sup>-18</sup> m)

# Backup


#### $\chi^2$ Function (arXiv:0911.0884v2 [hep-ex])

$$\chi^{2} = \sum_{i} \frac{\left[\sigma_{i}^{\exp} - \sigma_{i}^{theo} \left[1 - \sum_{k} \Delta_{ik}^{corr}(\epsilon_{k})\right]\right]^{2}}{\left[\delta_{i, stat}^{2} \sigma_{i}^{\exp} \sigma_{i}^{theo} \left[1 - \sum_{k} \Delta_{ik}^{corr}(\epsilon_{k})\right] + (\delta_{i, uncorr} \sigma_{i}^{theo})^{2}\right]} + \sum_{k} \epsilon_{k}^{2}$$

The  $\chi^2$  function is used as a measure of agreement between data and different theoretical predictions. The presented form of  $\chi^2$  function takes into account correlated systematic uncertainties for the H1 cross section measurements.

```
\sigma_{i}^{\text{exp}} experimental cross section in Q^{2} bin i \sigma_{i}^{\text{theo}} theoretical cross section \Delta_{ik}(\epsilon_{k}) effect due to correlated error k for bin i \delta_{i,\text{stat}} relative statistical error \delta_{i,\text{uncorr}} relative uncorrelated error \epsilon_{1} f norm normalization \epsilon_{2} electron energy scale \epsilon_{3} polar angle uncertainty \epsilon_{4} PDF uncertainty
```

#### **Limit Estimation**



- 1. Scan through the η. Determine  $\eta_{\text{data}}$  from  $\chi^2(\eta)$  dependence that will correspond to minimal value of  $\chi^2$ .
- 2. For each  $\eta$  a number of MC experiments is performed. For each MC experiment  $\chi_{min^2}$  and corresponding  $\eta_{mce}$  is determined.
- 3. Set the limit at the value of  $\eta$  at which 95% of events would have  $\eta_{mce} > \eta_{data}$ .